Home  |  About JAPTR |  Editorial board  |  Search |  Ahead of print  |  Current issue  |  Archives |  Submit article  |  Instructions  |  Subscribe  |  Advertise  |  Contacts  |Login 
Users Online: 136   Home Print this page Email this page Small font sizeDefault font sizeIncrease font size
Year : 2016  |  Volume : 7  |  Issue : 3  |  Page : 80-86

Conductometric and volumetric studies of atorvastatin in aqueous solution of arginine from 298.15 to 313.15 K

1 Laboratory Fundamental of Pharmaceutics, Faculty of Pharmacy; Pharmaceutical and Life Sciences Core, Universiti Teknologi MARA, Shah Alam, Selangor Darul Ehsan, Malaysia
2 Pharmaceutical and Life Sciences Core, Universiti Teknologi MARA, Shah Alam, Selangor Darul Ehsan, Malaysia

Correspondence Address:
Minaketan Tripathy
Laboratory Fundamental of Pharmaceutics, Faculty of Pharmacy, Universiti Teknologi MARA, 42300 Bandar Puncak Alam, Selangor
Login to access the Email id

Source of Support: None, Conflict of Interest: None

DOI: 10.4103/2231-4040.184589

Rights and Permissions

Categorized as a Biopharmaceutics Classification System Class II drugs, atorvastatin (ATV) exhibits low aqueous solubility and bioavailability thus presenting an obstacle and great challenge to formulation researchers. Numerous studies are available in regard to the solubility enhancement of ATV, but very few actually describe this phenomenon in terms of thermodynamics and the solute-solvent interaction. Arginine (ARG) is an amino acid that has been reported to enhance the solubility of the highly insoluble wheat protein gluten through hydrogen bonding and π electron-cation interaction. To our knowledge, ARG has never been investigated as a solubility enhancement agent of aqueous insoluble drugs. Thus, this study aimed to elucidate the solute-solvent and solute-cosolute interactions and derive thermodynamic parameters that bolstered the solubility of ATV in the presence of ARG. We examined the electrolytic conductance and densities of ATV-ARG binary system covering the temperature ranging from 298.15 K to 313.15 K. Conductometric and volumetric parameters such as limiting molar conductance, association constants, limiting partial molar volumes, and expansibility values were calculated. Additionally, thermodynamic parameters (ΔG0, ΔH0, ΔS0, and Es) involved in the association process of the solute in the aqueous solution of ARG were also determined.

Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)

 Article Access Statistics
    PDF Downloaded422    
    Comments [Add]    
    Cited by others 6    

Recommend this journal