Home  |  About JAPTR |  Editorial board  |  Search |  Ahead of print  |  Current issue  |  Archives |  Submit article  |  Instructions  |  Subscribe  |  Advertise  |  Contacts  |Login 
Users Online: 7409   Home Print this page Email this page Small font sizeDefault font sizeIncrease font size
     
ORIGINAL ARTICLE
Year : 2013  |  Volume : 4  |  Issue : 1  |  Page : 18-24

In vitro dissolution study of atorvastatin binary solid dispersion


1 Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Dhaka, Dhaka, Bangladesh
2 Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Dhaka, Dhaka, Bangladesh

Correspondence Address:
Md. Saiful Islam
Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Dhaka, Khondokar Mokarram H. Science Building (Ground Floor), Dhaka - 1000
Bangladesh
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/2231-4040.107496

Rights and Permissions

The aim of the present study was to improve the solubility and dissolution rate of atorvastatin (ATV), a slight water-soluble drug, by solid dispersion (SD) technique using a hydrophilic carrier Poloxamer 188 (POL188). Physical mixing (PM) and solvent evaporation (SE) method were used to prepare ATV-SD where different drug-carrier ratios were used. Prepared formulations were characterized in their solid state by solubility study; differential scanning calorimetry, scanning electron microscopy, and Fourier transform infrared spectroscopy which demonstrated changes in the formulations supporting the improved solubility. Percent content of POL188 in the SD matrix was found to play the pivotal role in the improvement of dissolution property of ATV. In case of PM, highest enhancement in drug release was found for 1:3 ratio (P < 0.05, ANOVA Single factor) whereas in case of SE, 3:0.5 ratio of ATV-POL188 resulted the maximum enhancement in ATV release (P < 0.05, ANOVA Single factor). Analysis of dissolution data of optimized formula indicated the best fitting with Peppas-Korsmeyer model and the drug release kinetics was fickian diffusion. In conclusion, binary SD prepared by both PM and SE technique using POL188 could be considered as a simple, efficient method to prepare ATV solid dispersions with significant improvement in the dissolution rate.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed4170    
    Printed119    
    Emailed1    
    PDF Downloaded557    
    Comments [Add]    
    Cited by others 9    

Recommend this journal