Home  |  About JAPTR |  Editorial board  |  Search |  Ahead of print  |  Current issue  |  Archives |  Submit article  |  Instructions  |  Subscribe  |  Advertise  |  Contacts  |Login 
Users Online: 362   Home Print this page Email this page Small font sizeDefault font sizeIncrease font size
Year : 2012  |  Volume : 3  |  Issue : 3  |  Page : 176-181

Development of an ex vivo model for pharmacological experimentation on isolated tissue preparation

1 SLT Institute of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya, Bilaspur, Chhattisgarh, India
2 College of Pharmacy, IPS Academy, Indore, India
3 Department of Pharmacy, Shri G.S. Institute of Technology and Science, Indore - 452003, India

Correspondence Address:
Gaurav Jain
SLT Institute of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya, Bilaspur - 495009, Chhattisgarh
Login to access the Email id

Source of Support: None, Conflict of Interest: None

DOI: 10.4103/2231-4040.101013

Rights and Permissions

Pharmacology as a subject depends largely on experiments conducted in laboratory animals. Experimental animals like rat, guinea pig, rabbit, etc. are used for the biological assay. For the teaching purposes to use isolated strip preparations from various organs, the laboratory animal species has to be sacrificed just for a piece of tissue. The present study was aimed to develop ex vivo model for pharmacological experimentation, which will mimic the actual laboratory condition without sacrificing the experimental animals. Dose response curve of acetylcholine alone and in presence of different concentrations of atropine was plotted using isolated chicken ileum, chicken duodenum, rat ileum, and rat duodenum and their EC 50 values were compared. The effect of atropine in terms of its type of antagonism was predicted based on Schild plot and pA 2 values were obtained. The chicken ileum and duodenum were also evaluated for four- and three-point bioassay, respectively. The results suggested that acetylcholine produced a dose-dependent increase in contraction in both chicken and rat ileum and duodenum preparation. The concentration response curve of acetylcholine in chicken ileum shifted toward left side of rat ileum with a higher EC 50 value. Atropine shifted the concentration response curve of acetylcholine toward right with a change in EC 50 value. Schild plots indicated that antagonism produced by atropine was found to be competitive in nature. The pA 2 values of atropine were found significantly high with isolated chicken ileum as compared to rat ileum preparation. It is concluded that isolated chicken ileum and duodenum preparation can be employed for routine experiments of pharmacology subject and the use of these isolated preparations is a novel approach for managing pharmacological experiments and importantly, without sacrificing the experimental animals.

Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)

 Article Access Statistics
    PDF Downloaded1403    
    Comments [Add]    
    Cited by others 3    

Recommend this journal