Home  |  About JAPTR |  Editorial board  |  Search |  Ahead of print  |  Current issue  |  Archives |  Submit article  |  Instructions  |  Subscribe  |  Advertise  |  Contacts  |Login 
Users Online: 645   Home Print this page Email this page Small font sizeDefault font sizeIncrease font size

 Table of Contents  
Year : 2012  |  Volume : 3  |  Issue : 2  |  Page : 130-135  

Development and validation of a HPLC method for the determination of trans-resveratrol in spiked human plasma

Department of Pharmaceutics, Faculty of Pharmacy, Al-Ameen College of Pharmacy, Bangalore, Karnataka, India

Date of Web Publication16-Jun-2012

Correspondence Address:
Roopa S Pai
Department of Pharmaceutics, Faculty of Pharmacy, Al-Ameen College of Pharmacy, Near Lal Bagh Main Gate, Bangalore - 560 027, Karnataka
Login to access the Email id

Source of Support: None, Conflict of Interest: None

DOI: 10.4103/2231-4040.97296

Rights and Permissions

A simple, accurate, precise, sensitive, and reproducible high-performance liquid chromatography method was developed for the determination of Resveratrol (trans-3, 4΄,5-trihydroxystilbene) in human plasma using liquid-liquid extraction. Caffeine was employed as an internal standard (IS). However, little information is known about its distribution in the organism generally because of the lack of accurate and precise detection methods. The chromatographic separation was achieved on a Phenomenex C18 column (250 mm × 4.6 mm, 5 μm) at room temperature in isocratic mode, and the column effluent was monitored by UV detector at 306 nm. The mobile phase used was methanol: phosphate buffer (pH 6.8 adjusted with 0.5% (v/v) orthophosphoric acid solution in Milli-Q water) (63:37%, v/v) at a flow rate of 1.0 ml/min. Nominal retention times of trans-resveratrol and IS were 3.94 and 7.86 minutes, respectively. Limits of detection and Limits of quantification of trans-resveratrol were 0.006 μg/ml and 0.008 μg/ml, respectively. This method was linear over the range of 0.010 to 6.4 μg/ml with regression coefficient greater than 0.9998. The inter- and intra-day precisions in the samples, 0.010, 3.2 and 6.4 μg/ml of trans-resveratrol was in the range 0.63 to 2.12% relative standard deviation (RSD) and 0.46 to 1.02% RSD, respectively. Resveratrol was found to be stable for a period of 15 days on storage at -20°C. The method was found to be precise, accurate, and specific during the study.

Keywords: Caffeine, high-performance liquid chromatography, human plasma, trans-resveratrol

How to cite this article:
Singh G, Pai RS, Pandit V. Development and validation of a HPLC method for the determination of trans-resveratrol in spiked human plasma. J Adv Pharm Technol Res 2012;3:130-5

How to cite this URL:
Singh G, Pai RS, Pandit V. Development and validation of a HPLC method for the determination of trans-resveratrol in spiked human plasma. J Adv Pharm Technol Res [serial online] 2012 [cited 2022 Aug 17];3:130-5. Available from: https://www.japtr.org/text.asp?2012/3/2/130/97296

   Introduction Top

In recent years, there has been a budding interest in trans-resveratrol (3, 4′,5-trihydroxystilbene), a phytochemical occurring naturally in high to moderate quantities in various foods including grapes, peanuts, and wine. [1] The structure of trans-resveratrol is shown in [Figure 1]. Trans-resveratrol holds a broad range of pharmacological properties without harmful effects and is well known for its antioxidant, anti-inflammatory, analgesic, cardioprotective, neuroprotective, anti-aging, and anticancer activities. [2] It inhibits the oxidation of low-density lipoprotein and platelet aggregation, [3] and protects isolated rat hearts from ischemia-reperfusion injury. The so-called French paradox stimulated the interest in resveratrol in wine. [4] Resveratrol subsists as trans and cis isomers. The trans isomer exists in fruits and plants, but in red wines a small amount of cis isomer has been detected and it is supposed that the cis isomer is derived by isomerization from the trans isomer during the fermentation of grapes. [5]
Figure 1: The chemical structure of trans-resveratrol

Click here to view

Several methods have been presented in the literature to determine the concentration of trans-resveratrol in wines and very few high-performance liquid chromatography (HPLC) methods are reported for trans-resveratrol in spiked human plasma. But, drawbacks of these methods are cost effective and time consuming and may cause trans-resveratrol to change to its cis form. In addition, these methods lack sensitivity, with the detection limits always in μM range. [6],[7],[8],[9],[10],[11],[12],[13],[14]

The main objective of this work was to develop a simple with adequate sensitivity, selectivity, precision, and accuracy for the determination of trans-resveratrol in human plasma in a comparatively short time with high linearity. The HPLC method can abet in the measurement of trans-resveratrol in routine monitoring, if indispensable, in common laboratories. The method offers the advantage in terms of time consuming, cost saving, and robustness. The second objective is to validate the method as per the International Conference on Harmonisation guidelines (ICH) [Q2 (R1)].

   Materials and Methods Top

Chemicals and Reagents

trans-resveratrol was kindly donated by Sami Labs (Bangalore, India). Caffeine was supplied by Himedia (Mumbai, India). Purity was found to be more than 99% for both the compounds. Methanol was purchased from Finar Chemicals, Ahmedabad (Gujarat, India) and orthophosphoric acid was purchased from Merck (Mumbai, India). All these solvents were HPLC grade. Other chemicals used were HPLC and analytical grade and obtained from Himedia (Mumbai, India). Water used for the preparation of aqueous mobile phase in all experiments was passed through a Milli-Q water purification system supplied by Millipore (Bangalore, Karnataka, India) filtered through a 0.22 μm filter. The human blood was obtained from the Unique Blood Bank Center, Bangalore, India.

Special Precautions

All laboratory procedures involving the manipulations of trans-resveratrol were performed in dim light to avoid photochemical isomerization of trans-resveratrol to the cis form and were stored at room temperature, protected from light.


A gradient high-performance liquid chromatograph from Shimadzu (Japan), HPLC Class VP series with two LC-10ATVP pumps, SPD-10AVP variable wavelength programmable UV-vis detector, SCL-10AVP system controller and Shimadzu Class VP version 6.12 SP2 data station system was used. Phenomenex C18 column (250 mm × 4.6 mm, 5 μm) equipped with a guard column (4 mm × 3 mm × 5 μm) (Torrance, CA, USA) was used for the present analysis.

Separation of Plasma from Human Blood

Human blood was taken in 3 ml heparinized eppendorf tubes and centrifuged at 10, 000 rpm for 10 minutes using cold centrifuge (Remi Model TC 650 D) to extract the plasma. The plasma was stored in a deep freezer at -4°C until analysis.

Preparing the Standard Master Stock Solution

Individual clear stock solutions of trans-resveratrol and internal standard (IS) were prepared at 1 mg/ml concentration. Standard solutions of trans-resveratrol were prepared in mobile phase in which the concentration of trans-resveratrol was known. For trans-resveratrol, 10 mg powder was accurately weighed, dissolved in mobile phase, and volume adjusted up to 100 ml with mobile phase. IS, caffeine was prepared in a 100 ml volumetric flask by dissolving 10 mg powder in methanol to get a concentration of 10 μg/ml. All stock solutions were stored away from light at approximately 4°C and used within seven days.

Preparing the Control Plasma Samples

Preparation of plasma samples 0.010 to 6.4 μg/ml trans-resveratrol and 2.0 μg/ml caffeine IS were prepared in 10 ml volumetric flasks by spiking pooled drug-free plasma with known amounts of stock solutions, aliquoted and stored at -20°C.

Optimization of Plasma Extraction Method

To develop an efficient and reproducible extraction method from human plasma for trans-resveratrol, various solvents viz., acetonitrile, methanol, and acetone were used for extraction. Different compositions of solvents were attempted but no momentous result observed. The application of protein precipitation procedure has been exposed to be good choice in the extraction of trans-resveratrol. Acetonitrile as precipitating agent gave excellent recovery and reproducibility from human blood plasma for bioanalytical method development of trans-resveratrol and IS. [15]

Plasma Sample Extraction and Processing

To 100 μl of drug-free plasma was spiked with trans-resveratrol and IS. 20 μl of the caffeine solution was added and 50 μl of the trans-resveratrol solution was added to the drug-spiked plasma. Final concentration of IS was 2.0 μg/ml. After the addition of 200 μl of acetonitrile as precipitating agent to the drug-spiked plasma, the solutions were vortex-mixed for 1 minute followed by centrifugation at 10, 000 rpm for 10 minutes using a cold centrifuge Remi Model TC 650 D and organic layer transferred to heparinized eppendorf tubes. The organic layer (100 μl) was separated and 50 μl aliquot was injected onto the chromatographic system for analysis.

Chromatographic Conditions

The samples were chromatographed on a Phenomenex C18 column (250 mm Χ 4.6 mm, 5 μm) column. The mobile phase used was methanol: phosphate buffer (pH 6.8 adjusted with 0.5% (v/v) orthophosphoric acid solution in Milli-Q water) (63:37%, v/v) filtered through a 0.22 μm nylon membrane and ultrasonically degassed prior to use. The mobile phase was delivered at a flow rate of 1.0 ml/min. The injection volume was 50 μl. The eluate was monitored by an ultraviolet detector set at 306 nm. The maximal absorption for trans-resveratrol and the same wavelength were found adequate for monitoring the IS. The temperature used for HPLC was ambient.

Calibration Curves

Calibration curves were attained by plotting the peak area ratio of trans-resveratrol:IS against the nominal concentration of calibration standards. The concentrations of trans-resveratrol used were 0.010-6.40 μg/ml, respectively.

Validation of the Developed Method

All the validation studies were carried out as per ICH guidelines [Q2 (R1)] by six consecutive replicate injections of the sample and standard solutions. Selectivity is the ability of the analytical method to differentiate and quantify the analyte in the presence of other expected components in the sample. Sensitivity was determined by analyzing control human plasma in replicates (n = 6) spiked with the analyte at the lowest level of the calibration standard, that is 0.010 μg/ml.

Accuracy and precision of the quality control (QC) samples were calculated using the calibration curve. Assay precision was assessed by expressing the standard deviation of the measurements as a percentage of the average value. The accuracy was estimated for each spiked control by comparing the nominal concentration with the assayed concentration.

Extraction Recovery

The recovery of trans-resveratrol and IS were determined. The recovery of trans-resveratrol was determined at concentration of 0.010, 3.2 and 6.4 μg/ml and for IS was determined at a concentration of 2.00 μg/ml. Six replicates at each concentration level with peak area response from non-extracted control samples prepared at the same concentration level were prepared and injected into the HPLC system.

Precision and Accuracy

The intra-assay precision and accuracy were estimated by analyzing six replicates containing trans-resveratrol at three different levels, i.e., 0.010, 3.2 and 6.4 μg/ml. The inter-assay precision was determined by analyzing the three levels on six different runs. The criteria for acceptability of the data included accuracy within ±15% deviation (DEV) from the nominal values and precision within 15% relative standard deviation (RSD). [16],[17] For intra-day, accuracy and precision at each concentration were assayed on the same day. The inter-day accuracy and precision were evaluated for three subsequent days.

Limit of Detection and Limit of Quantification

The limit of detection (LOD) and the limit of quantification (LOQ) were determined at 3.3 and 10 times the baseline noise, respectively. [18]


From the stock solution, sample solutions of trans-resveratrol (0.010 μg/ml, 2 μg/ml, 4 μg ml and 6.4 μg/ml) were equipped and analyzed by two different analysts employing analogous operational and environmental surroundings. The peak area was calculated for identical concentration solutions six times.

Stability experiments

The stability of trans-resveratrol in solution as well as plasma matrix was evaluated. The stock solution stability was evaluated at room temperature for 10 hours for 15 days and these were compared with freshly prepared stock solution. The stability of trans-resveratrol and IS in the injection solvent was determined intermittently by injecting replicate preparations of processed samples for up to 4 hours after the initial injection. Repeated freeze-thaw cycles were assessed using human samples spiked with trans-resveratrol. The samples were stored at -20°C between freeze-thaw cycles. The samples were thawed by allowing them to stand at room temperature for 30 minutes. The samples were then kept in the freezer following drawing out the required volume. The stability of resveratrol isomers was assessed after three freeze-thaw cycles. The samples were treated using the similar procedure as described in the sample preparation section. [19],[20]

   Results and Discussion Top

High-performance Liquid Chromatography Method Development and Optimization

Column chemistry, solvent type, solvent strength, detection wavelength, and flow rate were varied to determine the chromatographic conditions giving the best separation. The mobile phase conditions were optimized so that the components were not interfered from the solvents and excipients.

After trying different column, the final choice was the reversed phase Phenomenex C18 column of stationary phase giving satisfactory resolution and run time. Mobile phase and flow rate selection was based on peak parameters viz., height, area, tailing, theoretical plates, capacity factor and resolution.

Method Validation


Short elution time, good separation between trans-resveratrol and IS, and baselines with low background were accomplished by using a reversed phase Phenomenex C18 column with low carbon load. C18 analytical columns with different carbon loads showed different selectivity. Reducing the pH of phosphate buffer and alter the ratio of organic to aqueous phase reduced the retention times of trans-resveratrol and IS. Finally, a higher pH buffer with gradient elution was found to give the best results. Reducing the pH further gave grubby extracts. Though the drugs and IS have λ-max at same wavelengths, 306 nm was selected as both the molecules had good absorption at this wavelength and interference from endogenous substance was also relatively less.

The proposed method is suitable for quantification of trans-resveratrol and IS in human plasma samples. It showed specificity, since I.S. and drug were well resolved and no interfering peaks from endogenous components of normal plasma were observed, as can be seen from [Figure 2].
Figure 2: HPLC chromatograms of control blank Human plasma

Click here to view

Linearity, Limit of Detection, and Limit of Quantification

The peak area ratios of drug to IS for the calibration standards were proportional to the concentration of each drug in plasma over the range tested. The calibration curves were linear over the range of 0.010 to 6.4 μg/ml resulted in the regression equation y = 0.1732x + 0.0203 (r 2 > 0.9998). The LOD and LOQ of the calibration graph were 0.006 μg/ml and 0.008 μg/ml.


The selectivity was studied by analyzing blank plasma samples. The chromatogram of blank plasma [Figure 2] did not show any interfering compound. A typical chromatogram of a drug-free plasma sample spiked with trans-resveratrol and IS is shown in [Figure 3]. The retention times of trans-resveratrol and IS were 3.94 and 7.86 minutes, respectively.
Figure 3: HPLC chromatograms of human plasma spiked with trans-resveratrol and caffeine

Click here to view

In the chosen chromatographic conditions, no interfering endogenous compound peak was observed at the retention time of peaks of interest as evaluated by chromatograms of blank human plasma and plasma spiked with resveratrol and IS. Both trans-resveratrol and IS were well separated with retention times of 3.94 and 7.68 minutes, respectively.

Extraction Recovery

The absolute recovery of trans-resveratrol from plasma was calculated by comparing the peak area obtained from extracts of spiked plasma samples and the peak area obtained from the direct injection of known amounts of standard solutions of trans-resveratrol. The overall extraction yields of 0.010, 3.2, and 6.4 μg/ml trans-resveratrol in plasma were 93 to 98% [Table 1]. The study illustrated that at least 10minutes of centrifugation at 10, 000 rpm was needed for protein denaturization completely when 100 μl acetonitrile were added to 50 μl plasma sample.
Table 1: Recovery of trans-resveratrol and Internal standard from spiked human plasma samples (n = 6)

Click here to view

Precision and Accuracy

The precision and accuracy data for the analytical procedures are shown in [Table 2]. Intra-day and inter-day precision (%R.S.D.) of the methods were lower than 10% and were within the acceptable limits to meet the guidelines for United States Pharmacopeial norms method validation which is considered to be within 15% (RSD). [21],[22],[23] The accuracy of both the methods was also good with the deviation between the nominal concentration and calculated concentration for trans-resveratrol well below the limits of ±15%. Precision and accuracy data indicated that the methods to extract trans-resveratrol from plasma and tissues are highly reproducible and robust. The values of precision and accuracy were acceptable in view of the international recommendation that the precision and accuracy should not exceed 15%. [24],[25],[26]
Table 2: Intra- and inter-day precision and accuracy determination of trans-resveratrol concentration in spiked human plasma samples (n = 6 at each concentration for intra-day and n = 6 days for inter-day precision)

Click here to view


When the method was performed by two different analysts under the same experimental and environmental conditions, it was found to be rugged. The contents of the drug were not adversely affected by these changes as evident from the low values of % RSD (2%), indicating ruggedness of the method as shown in [Table 3]. %RSD values of less than 2% were acquired for repetitive measurements and operators.
Table 3: Values of ruggedness studies of the developed method

Click here to view


trans-resveratrol was shown to be stable in frozen plasma at -20°C for at least three freeze-thaw cycles and was found to be stable when stored at -20°C for at least 10 days. After storage for 10 days, trans-resveratrol remained unchanged, based on peak areas in comparison with freshly prepared solution of trans- resveratrol [Table 4].
Table 4: Stability studies of trans-resveratrol in human plasma

Click here to view

   Conclusion Top

A simple and sensitive method for the determination of trans-resveratrol, a novel antioxidant, in spiked human plasma by HPLC was developed and validated. Protein precipitation method was employed for sample preparation followed by chromatographic separation and UV detection. No interfering peaks were observed at the elution times of trans-resveratrol and IS. Adequate specificity, precision, and accuracy of the proposed method were demonstrated over the concentration range of 0.010 to 6.4 μg/ml. The method was accurate, reproducible, specific, and provided excellent separation and enable the quantification of trans-resveratrol in human plasma. The small volume of plasma required, the simplicity of separation procedure, and the short run time construct this method suitable for rapid and regular analysis.

   Acknowledgements Top

Authors are thankful to Prof. B.G. Shivananda, Principal, Al-Ameen College of Pharmacy, Bangalore, for his kind support throughout this research work. Authors are also grateful to Dr. Pritee Paliwal, Sr. Manager-Technical Support, Sami Labs, Bangalore, India for providing the gift sample of trans-resveratrol.

   References Top

1.Boocock DJ, Patel KR, Faust GE, Normolle DP, Marczylo TH, Crowelle JA, et al. Quantitation of trans-resveratrol and detection of its metabolites in human plasma and urine by high performance liquid chromatography. J Chromatogr B Analyt Technol Biomed Life Sci 2007;848:182-7.  Back to cited text no. 1
2.Juan ME, Maijo M, Planas JM. Quantification of trans-resveratrol and its metabolites in rat plasma and tissues by HPLC. J Pharm Biomed Anal 2010;51:391-8.  Back to cited text no. 2
3.Jang M, Cai L, Udeani GO, Slowing KV, Thomas CF, Beecher CW, et al. Cancer chemopreventive activity of resveratrol, a natural product derived from grapes. Science 1997;275:218-20.  Back to cited text no. 3
4.Carbo N, Francesco PC, Baccino M. Resveratrol, natural product present in wine, decreases tumour growth in a rat tumour model. Biochem Biophys Res Commun 1999;254:739-43.  Back to cited text no. 4
5.Goldberg DM, Tsang E, Karumanmanchiri A, Diamandis EP, Soleas G, Ng E. Method to assay the concentrations of phenolic constituents of biological interest in wines. Anal Chem 1996;68:1688-94.  Back to cited text no. 5
6.Lamuela-Raventos RM, Waterhouse AL. Occurrence of resveratrol in selected California wines by a new HPLC method. J Agric Food Chem 1993;41:521-3.  Back to cited text no. 6
7.Gurbuz O, Gocmen D, Dagdelen F, Gursoy M, Aydin S, Sahin I, et al. Determination of flavan-3-ols and trans-resveratrol in grapes and wine using HPLC with fluorescence detection. Food Chem 2007;100:518-25.  Back to cited text no. 7
8.Hanzlýkova IK, Melzoch K, Filip V, Smidrkal J. Rapid method for resveratrol determination by HPLC with electrochemical and UV detections in wine. Food Chem 2004;87:151-8.  Back to cited text no. 8
9.Juan ME, Raventos LR, Boronat TM, Planas JM. Determination of trans-resveratrol in plasma by HPLC. Anal Chem 1999;71:747-50.  Back to cited text no. 9
10.Goldberg DM, Karumanchiri A, Ng E, Yan J, Diamandis EP, Soleas GJ. Direct gas chromatographic-mass spectrometric method to assay-cis-resveratrol in wines: Preliminary survey of its concentration in commercial wines. J Agric Food Chem 1995;43:1245-50.  Back to cited text no. 10
11.Gu X, Chu Q, Dwyer OM, Zeece M. Analysis of resveratrol in wine by capillary electrophoresis. J Chromatogr A 2000;881:471-81.  Back to cited text no. 11
12.Kallithrakaa S, Arvanitoyannisb I, El-Zajoulia A, Kefalasa P. The application of an improved method for trans-resveratrol to determine the origin of Greek red wines. Food Chem 2001;75:355-63.  Back to cited text no. 12
13.Goldberg DM, Yan J, Ng E, Diamandis EP, Karumanchiri A, Soleas G, et al. Direct injection gas chromatographic mass spectrometric assay for trans-resveratrol. Anal Chem 1994;66:3959-63.  Back to cited text no. 13
14.Trela BC, Waterhouse AL. Resveratrol: Isomeric molar absorptivities and stability. J Agric Food Chem 1996;44:1253-7.  Back to cited text no. 14
15.Singh G, Pai RS, Devi VK. Response surface methodology and process optimization of sustained release pellets using Taguchi orthogonal array design and central composite design. J Adv Pharm Technol Res 2012;3:30-40.  Back to cited text no. 15
16.Jana k, Chatterjee K, Ali KM, Ghosh A, Bera TK, Gosh d. Antioxidant potential of hydro-methanolic extract of seed of Caesalpinia bonduc: An in vitro study. J Adv Pharm Technol Res 2011;2:260-5.  Back to cited text no. 16
17.United States Pharmacopeia. Rockville, MD: United States Pharmacopeial Convention; 1995;1982-84.  Back to cited text no. 17
18.FDA Guidance for Industry: Bioanaytical Method Validation. Rockville (MD): US Department of Health and Human Services, Food and Drug Administration, Center for Drug Evaluation and Research (CDER), Center for Biologics Evaluation and Research (CBER); 2001.  Back to cited text no. 18
19.Arora G, Malik K, Singh I, Arora S, Rana V. Formulation and evaluation of controlled release matrix mucoadhesive tablets of domperidone using Salvia plebeian gum. J Adv Pharm Technol Res 2011;2:163-9.  Back to cited text no. 19
20.Acharjya SK, Mallick P, Panda P, Kumar KR, Annapurna MM. Spectrophotometric methods for the determination of letrozole in bulk and pharmaceutical dosage forms. J Adv Pharm Technol Res 2010;1:348-53.  Back to cited text no. 20
21.Wu X, Yamashita F, Hashida M, Chen X, Zide Hu. Determination matrine in rat plasma by high-performance liquid chromatography and its application to pharmacokinetic studies. Talanta 2003;59:965-71.  Back to cited text no. 21
22.Pandit V, Pai RS, Yadav V, Devi K, Surekha BB, Inamdar MN. Pharmacokinetic and pharmacodynamic evaluation of floating microspheres of metformin hydrochloride. Drug Dev Ind Pharm 2012;1-11.  Back to cited text no. 22
23.Sethiya NK, Trivedi A, Patel MB, Mishra SH. Comparative pharmacognostical investigation on four ethanobotanicals traditionally used as Shankhpushpi in India. J Adv Pharm Technol Res 2010;1:388-95.  Back to cited text no. 23
24.Akhlaq M, Khan GM, Wahab A, Khan A, Hussain A, Nawaz A, et al. A simple high-performance liquid chromatographic practical approach for determination of flurbiprofen. J Adv Pharm Technol Res 2011;2:151-5.  Back to cited text no. 24
25.Sharma US, Kumar A. in vitro antioxidant activity of Rubus ellipticus fruits. J Adv Pharm Technol Res 2011;2:47-50.  Back to cited text no. 25
26.Shah GR, Ghosh C, Thaker BT. Determination of pregabalin in human plasma by electrospray ionisation tandem mass spectroscopy. J Adv Pharm Technol Res 2010;1:354-7.  Back to cited text no. 26


  [Figure 1], [Figure 2], [Figure 3]

  [Table 1], [Table 2], [Table 3], [Table 4]

This article has been cited by
1 Resveratrol Triggered the Quick Self-Assembly of Gallic Acid into Therapeutic Hydrogels for Healing of Bacterially Infected Wounds
Xin-Chuang Wang, Hai-Bo Huang, Wei Gong, Wan-Ying He, Xiang Li, Yu Xu, Xiao-Jie Gong, Jiang-Ning Hu
Biomacromolecules. 2022;
[Pubmed] | [DOI]
2 Donepezil HCl Liposomes: Development, Characterization, Cytotoxicity, and Pharmacokinetic Study
Amarjitsing Rajput, Shital Butani
AAPS PharmSciTech. 2022; 23(2)
[Pubmed] | [DOI]
3 Formulation design, optimization and in vivo evaluation of oral co-encapsulated resveratrol-humic acid colloidal polymeric nanocarriers
Rahul Hasija,Sundeep Chaurasia,Swati Gupta
Pharmaceutical Development and Technology. 2021; : 1
[Pubmed] | [DOI]
4 UPLC–MS/MS Method Validation for Estimation of Resveratrol in Rat Skin from Liposphere Gel Formulation and Its Application to Dermatokinetic Studies in Rats
Mahfoozur Rahman,Obaid Afzal,Sunil K Panda,Imran Kazmi,Ahmed Mahmoud Abdelhaleem Ali,Manal A Alossaimi,Fahad A Al-Abbasi,Waleed H Almalki,Hanadi A Katouah,Vikas Kumar,Md Abul Barkat,Rehan A Rub,Sarwar Beg
Journal of Chromatographic Science. 2021;
[Pubmed] | [DOI]
5 Enhancement of the gut-retention time of resveratrol using waxy maize starch nanocrystal-stabilized and chitosan-coated Pickering emulsions
Myeongsu Jo,Choongjin Ban,Kelvin K.T. Goh,Young Jin Choi
Food Hydrocolloids. 2021; 112: 106291
[Pubmed] | [DOI]
6 Liquid Chromatographic Analysis of Methotrexate and Minocycline-relevance to the Determination in Plasma/Nanoparticulate Formulations
Kumar Janakiraman, Venkateshwaran Krishnaswami, Vaidevi Sethuraman, Vijaya Rajendran, Ruckmani Kandasamy
Current Chromatography. 2021; 8(1): 21
[Pubmed] | [DOI]
7 Rapid, Highly-Sensitive and Ecologically Greener Reversed-Phase/Normal-Phase HPTLC Technique with Univariate Calibration for the Determination of Trans-Resveratrol
Prawez Alam,Faiyaz Shakeel,Mohammed H. Alqarni,Ahmed I. Foudah,Mohammed M. Ghoneim,Sultan Alshehri
Separations. 2021; 8(10): 184
[Pubmed] | [DOI]
8 Implementation of analytical quality-by-design and green analytical chemistry approaches for the development of robust and ecofriendly UHPLC analytical method for quantification of chrysin
Teenu Sharma,Atul Jain,Sumant Saini,OP Katare,Bhupinder Singh
[Pubmed] | [DOI]
9 Stability-Indicating High-Performance Thin-Layer Chromatographic Method for the Simultaneous Determination of Quercetin and Resveratrol in the Lipid-Based Nanoformulation
Mohammad Imran,Mohammad Kashif Iqubal,Sayeed Ahmad,Javed Ali,Sanjula Baboota
JPC - Journal of Planar Chromatography - Modern TLC. 2019; 32(5): 393
[Pubmed] | [DOI]
10 Development of a validated liquid chromatographic method for quantification of sorafenib tosylate in the presence of stress-induced degradation products and in biological matrix employing analytical quality by design approach
Teenu Sharma,Rajneet Kaur Khurana,Atul Jain,O.P. Katare,Bhupinder Singh
Biomedical Chromatography. 2018; : e4169
[Pubmed] | [DOI]
11 Trans resveratrol loaded DSPE PEG 2000 coated liposomes: An evidence for prolonged systemic circulation and passive brain targeting
Mahalingam Rajamanickam Vijayakumar,Ramoji Kosuru,Parameswara Rao Vuddanda,Sanjay Kumar Singh,Sanjay Singh
Journal of Drug Delivery Science and Technology. 2016;
[Pubmed] | [DOI]
12 Pharmacokinetics, biodistribution, in vitro cytotoxicity and biocompatibility of Vitamin E TPGS coated trans resveratrol liposomes
Mahalingam Rajamanickam Vijayakumar,Kiran Yellappa Vajanthri,Chelladurai Karthikeyan Balavigneswaran,Sanjeev Kumar Mahto,Nira Mishra,Madaswamy S. Muthu,Sanjay Singh
Colloids and Surfaces B: Biointerfaces. 2016; 145: 479
[Pubmed] | [DOI]
13 In vitro drug release and ex vivo percutaneous absorption of resveratrol cream using HPLC with zirconized silica stationary phase
Hudson Caetano Polonini,Carina de Almeida Bastos,Marcone Augusto Leal de Oliveira,Carla Grazieli Azevedo da Silva,Carol Hollingworth Collins,Marcos Antônio Fernandes Brandão,Nádia Rezende Barbosa Raposo
Journal of Chromatography B. 2014; 947-948: 23
[Pubmed] | [DOI]
14 In vitro drug release and ex vivo percutaneous absorption of resveratrol cream using HPLC with zirconized silica stationary phase
Polonini, H.C., Bastos, C.D.A., Oliveira, M.A.L.D.,Brandão, M.A.F., Raposo, N.R.B.
Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences. 2014; 947-948(23): 31
15 Development of a Lozenge for Oral Transmucosal Delivery of Trans-Resveratrol in Humans: Proof of Concept
Otis L. Blanchard,Gregory Friesenhahn,Martin A. Javors,James M. Smoliga,Joseph J. Barchi
PLoS ONE. 2014; 9(2): e90131
[Pubmed] | [DOI]
16 In-vitro/in-vivo characterization oftrans-resveratrol-loaded nanoparticulate drug delivery system for oral administration
Gurinder Singh,Roopa S. Pai
Journal of Pharmacy and Pharmacology. 2014; : n/a
[Pubmed] | [DOI]
17 Preparation, characterization and dissolution of solid dispersion of diclofenac sodium using eudragit E-100
Jafari, E.
Journal of Applied Pharmaceutical Science. 2013; 3(8): 167-170
18 Multiparticulate formulation of Valdecoxib for the treatment of rheumatoid arthritis
Audity Ganguly Rupesh, Sarasija Suresh and Vinay Pandit
Journal of Applied Pharmaceutical Science. 2012; 2(6): 217-222
19 Quantitative analysis of Glycyrrhizic acid from a polyherbal preparation using liquid chromatographic technique
De, A.K., Datta, S., Mukherjee, A.
Journal of Advanced Pharmaceutical Technology and Research. 2012; 3(4): 210-215


    Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
    Access Statistics
    Email Alert *
    Add to My List *
* Registration required (free)  

  In this article
    Materials and Me...
    Results and Disc...
    Article Figures
    Article Tables

 Article Access Statistics
    PDF Downloaded808    
    Comments [Add]    
    Cited by others 19    

Recommend this journal