Home  |  About JAPTR |  Editorial board  |  Search |  Ahead of print  |  Current issue  |  Archives |  Submit article  |  Instructions  |  Subscribe  |  Advertise  |  Contacts  |Login 
Users Online: 277   Home Print this page Email this page Small font sizeDefault font sizeIncrease font size
     

 Table of Contents  
ORIGINAL ARTICLE
Year : 2017  |  Volume : 8  |  Issue : 2  |  Page : 46-51  

Antimicrobial and enzymatic activity of actinomycetes isolated from soils of coastal islands


Department of Microbiology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture, Nitra, Slovakia

Date of Web Publication11-Apr-2017

Correspondence Address:
Ivana Charousova
Department of Microbiology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture, Tr. A. Hlinku 2, 949 76 Nitra
Slovakia
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/japtr.JAPTR_161_16

Rights and Permissions
  Abstract 

Microbiological investigation of unexplored ecosystems is crucial for discovering of antibiotic producing actinomycetes. The present study was conducted to determine antimicrobial activity and identify the most active strains. Actinomycetes were isolated using the spread plate technique following by serial dilution of samples on starch casein agar. The screening method consists of primary and secondary testing. The most active isolates were identified based on molecular and cultural methods. 42 out of 66 isolates displayed antimicrobial potential. 63% exhibited antibacterial activity, 16% antifungal activity, and 16% displayed both activities. Identified isolates, Streptomyces scabrisporus, Streptomyces sparsogenes, Streptomyces misakiensis, Streptomyces cirratus, Streptomyces lincolnensis, Streptomyces endophyticus, Streptomyces chartreusis, and Streptomyces alboniger showed a broad spectrum of enzymatic activities. The results indicated that these isolates may serve as antibiotic and enzyme-producing microbes.

Keywords: Actinomycetes, human pathogens, primary and secondary screening, unexplored soils


How to cite this article:
Charousova I, Medo J, Halenárová E, Javoreková S. Antimicrobial and enzymatic activity of actinomycetes isolated from soils of coastal islands. J Adv Pharm Technol Res 2017;8:46-51

How to cite this URL:
Charousova I, Medo J, Halenárová E, Javoreková S. Antimicrobial and enzymatic activity of actinomycetes isolated from soils of coastal islands. J Adv Pharm Technol Res [serial online] 2017 [cited 2017 Dec 12];8:46-51. Available from: http://www.japtr.org/text.asp?2017/8/2/46/204338


  Introduction Top


Although the soil is a natural reservoir of actinomycetes which produce antibiotics for pharmaceutical industry,[1] unexplored habitats and niches have attracted considerable attention in recent years.[2] Actinomycetes are Gram-positive, saprophytic filamentous bacteria [3] that are responsible for the production of over 20,000 natural products extensively used in pharmaceutical and agrochemical industry.[4] The need of new antimicrobial agents is greater than ever due to the emergence of multidrug resistance in common pathogens, and the rapid emergence of new infections.[5] Keeping these points in view, the present study was undertaken to isolate and characterize antimicrobial actinomycetes from soil samples collected in coastal areas. In accordance with the previous reports, we initiated this research program, because to obtain antimicrobials from soils, scientific are trying to investigate unexplored habitats for interesting streptomycetes as the possible candidates for the discovery of antimicrobial compounds.


  Materials and Methods Top


Collection of samples

The soil samples were collected from coastal islands, Mauritius, archipelago Mascarenes (20°18‘32.45’S, 57°22‘10.52E), Bahamas – Nassau (25°02‘12.92’N, 77°22‘27.63’W), Canary Islands – Gran Canaria (28°09‘37.62’N 15°25‘12.50W), and from Democratic Socialist Republic of Sri Lanka – Colombo (6°55‘03.40’N 79°51‘11.60E). The soil samples were air-dried for 2 days, crushed, sieved and dried for 45 min at 60°C to eliminate the fungal growth. The pH of soils was determined in water solution.

Isolation of actinomycetes

Soil samples were plated following the dilution plating method on starch casein agar [6] supplemented with cycloheximide (1 mg/mL). The plates were incubated at 30°C for 7 days. The identification of actinomycetes was done based on morphology of spore chains and presence of aerial and substrate mycelium. Isolates were purified on ISP2 medium [7] and identical colonies were scored out.

Screening of antimicrobial activity

Primary screening was determined by agar plug method.[8] The ethyl acetate extracts of active strains were subjected to secondary screening using the broth microdilution method.[9] The ethyl acetate was added to the cultures in the ratio of 1:1 (v/v), centrifuged, and evaporated in a rotary evaporator (Stuart, UK) at 40°C. Final extracts were dissolved in 1 ml of ethyl acetate:acetone:methanol solution in ratio 1:1:1 (v/v). Dilution stages of raw extracts were observed by inhibited wells (A-H).

The test microorganisms included Bacillus subtilis (B.s) (DSM 10), Micrococcus luteus (M.l) (DSM1790), Staphylococcus aureus (S.a) (Newman), Mycobacterium smegmatis (M.s) (ATCC 700084), Escherichia coli (E.c1) (DSM 1116), E. coli(E.c2) (TolC), Pseudomonas aeruginosa (Ps.a) (PA14), Chromobacterium violaceum (Ch.v) (DSM 30191), Candida albicans (C.a) (DSM 1665), Pichia anomala (P.a) (DSM 6766), and Mucor hiemalis (M.h) (DSM 2656).

Characterization of the most antagonistic isolates

Molecular taxonomy and phylogenetic analysis

The isolation of genomic DNA was done by the method described by [10] and amplified by PCR using primers according to.[11] The PCR reaction ran in thermocycler Biometra T Personal (Germany). Reaction mixture was prepared in total volume of 50 μL (5 μL of 10 × DreamTaq Green PCR buffer, 5 μL of 2 mmol.dm–3dNTP, 2 μL of each 10 μmol.dm–3 primer, 0,3 μL Taq DNA polymerase, and 0.5 μL of template DNA-approximately 20 ng). The PCR reaction ran under the following conditions: 95°C for 3 min, 40 cycles of 95°C for 30 s, 56°C for 30 s, 72°C for 90 s, and a final extension at 72°C for 10 min. PCR products were purified with exonuclease I and thermosensitive alkaline phosphatase. The sequencing was carried out in MacroGen, South Korea. The similarity of the 16S rRNA partial gene sequences was analyzed with the similar existing sequences available in the data bank of NCBI using BLAST search.

Morphological, physiological, and biochemical characterization

Morphological characteristics of the strains were determined using the methods given by the International Streptomyces Project (ISP) on ISP2-ISP7 media.[7] Physiological characteristics included the growth at different temperatures range from 4°C to 42°C, pH range from 4.0 to 10.0, sodium chloride tolerance test (2.5%, 5%, 7.5%, and 10%), and utilization of the different carbon sources (glucose, arabinose, inositol, cellulose, mannose, fructose, galactose, rhamnose, sucrose, xylose) on ISP9 medium. Biochemical characteristic was done using ApiZym ® kit (bioMérieux, France). Api stripes were inoculated and evaluated according to manufacturer's manual.


  Results and Discussion Top


In the present study, actinomycetes were isolated from soil samples collected from different coastal areas of the world with a view to isolate cultures with antimicrobial activities. A total of 264 actinomycetes were isolated from 4 soil samples at mesophilic temperature. Maximum number of colonies was obtained from samples no. 1 and 2. When considering the pH of the samples, the highest viable colonies were recovered from neutral to alkaline (pH 6.7–7.5) soil while the lowest from acidic soil [Table 1].
Table 1: Distribution of actinomycetes

Click here to view


The actinomycetes grew for 1 week thus releasing of their secondary metabolites was enabled. Based on colony morphology, 66 suspected actinomycete cultures were tested in primary screening. The formation of inhibition zones as a result of the production of secondary metabolites were exhibited at 64% of all studied actinomycetes. Tested strains showed high activity against Gram-positive bacteria, moderate activity against Gram-negative bacteria C. violaceum and E. coli(TolC), yeasts and fungus and low activity against Gram-negative bacteria, P. aeruginosa and E. coli(DSM 1116) [Figure 1]a. The results from the present study are in agreement with many studies.[12],[13] They reported that actinomycetes usually show good activity against Gram-positive bacteria but lacking activity against Gram-negative bacteria. The reason for different sensitivity could be ascribed to the morphological differences of their outer membrane.[14] There is also the possibility that Gram-negative bacteria might have acquired the resistant genes from the neighboring resistant bacterial cells in the previous environment.[15]
Figure 1: Antimicrobial activity of tested actinomycetes in (a) primary screening, (b) secondary screening

Click here to view


All active strains in primary screening were subjected to secondary screening [Figure 1]b. Some of the isolates did not show any activity. This may be associated with disintegration of the ethyl acetate extracts during the extraction process, while some showed low or improved activity. During this screening, actinomycete isolates show antibiotic activity mostly on agar plates in comparison with liquid extracts. There are two explanations for these results; first, the cultivation on solid and liquid media may lead to the production of different active antibiotics. Second, some compounds may be lost during the organic solvent extraction, because the active components may become inactivated during the extraction step.[16] Eight isolates [Table 2] showed high antimicrobial activity against both bacterial and fungal test organisms and therefore were selected for the next characterization studies.
Table 2: Antimicrobial activity of the most active strains in primary and secondary screening

Click here to view


Noticeable development was recorded when isolate MR3 inhibited almost all the bacterial as well as fungal test organisms to a greater extent. Maximum activity was recorded against B. subtilis, S. aureus, M. luteus, and M. smegmatis (32–42 mm) with inhibited wells until H. On the other hand, isolate CGI2 proved to be more active against Gram-negative organisms, especially against C. violaceum and E. coli DSM1665. The fact that selectively active actinomycete isolates exhibited broad spectrum of antibacterial and antifungal activities signify the possible production of several antimicrobial secondary metabolites and secretion of compounds with multiple microbial targets.

Characterization of the most potent isolates

To clarify which species were responsible for the antimicrobial effect and understand their phylogenetic relationships, those actinomycetes were identified based on 16S rRNA gene sequences and cultural taxonomy procedure. The dendrogram of the eight isolates indicating species relatedness. The dendrogram differentiated the strains into two broad groups. Strains CGI4 and CGI5 formed the first group while CGI2, CGI3, SL11, BNA21, MR3, and BNA14 constituted the second group. Phylogenetic comparison of sequences with the databases of valid species using NCBI server is shown in [Figure 2].
Figure 2: Phylogenetic positions of selected streptomycete isolates constructed by neighbor-joining method

Click here to view


It could be stated that the isolates could be identified as Streptomyces scabrisporus (CGI4), Streptomyces sparsogenes (CGI5), Streptomyces misakiensis (CGI2), Streptomyces cirratus (CGI3), Streptomyces lincolnensis (SL11), Streptomyces endophyticus (BNA21), Streptomyces chartreusis (MR3), and Streptomyces alboniger (BNA14) with 99% similarity.

Direct PCR amplification of 16S rRNA sequences from the most active isolates demonstrated excellent congruence with morphological and physiological characteristics. Morphology and physiology of tested strains were compared with the most similar strain given by 16S rRNA results. Six selective media were used to observe the colony morphology of the isolates. The colors of the aerial and substrate mycelium, aerial hyphae arrangements, and spore chain ornamentation indicating variation among the tested isolates [Table 3] and [Table 4].
Table 3: Morphological features of the most active strains

Click here to view
Table 4: Physiological features of the most active strains

Click here to view


Enzymatic characteristics and quantification of studied enzymes were analyzed with ApiZym ® stripes [Table 5]. We found out that all isolates exhibited high (>40 nmol) alkaline phosphatase, leucine arylamidase, acid phosphatase, naphthol-AS-BI-phosphohydrolase, and glucosidase activity. According to many previous reports, mentioned activities are common among streptomycete isolates.[17],[18] The use of ApiZym ® stripes is providing the advantage of easy and fast determination between two isolates showing significant appearance by means of the differences in their enzyme profiles.
Table 5: Enzymatic potential of selected streptomycete strains using API® ZYM stripes

Click here to view


For the proper identification of genera and species of streptomycetes, morphological, physiological and biochemical properties together with 16S rRNA sequencing were used to make fast and reliable identification of antimicrobial active strains, which can provide an interesting source of secondary metabolites, especially antibiotics.


  Conclusions Top


Extensive screening of the isolates for their antibacterial and antifungal activity revealed that eight of all tested strains have strong antibiotic producing potential. Therefore, these isolates prove to be promising strains which can be further studied for its applications in the production of important pharmaceutical compounds. Search for the important metabolites, especially from streptomycetes, requires screening from a large number of isolates to discover biological compounds and this study implies that streptomycetes from coastal soils are a potential source for the development of interesting antimicrobial agents.

Acknowledgment

The author is grateful to Helmholtz Centre for Infection Research (Microbial Strain Collection Group), Braunschweig, Germany for the scholarship and supporting of the results. This study was also supported by European Community under Project No. 26220220180: Building Research Centre Agrobiotech and by APVV-15-0543.

Financial support and sponsorship

Nil.

Conflicts of interest

There are no conflicts of interest.



 
  References Top

1.
Duraipandiyan V, Sasi AH, Islam VI, Valanarasu M, Ignacimuthu S. Antimicrobial properties of actinomycetes from the soil of Himalaya. J Mycol Med 2010;20:15-20.  Back to cited text no. 1
    
2.
Gopinath BV, Vootla PK, Jyothi R, Reddy S. Antimicrobial activity of actinomycetes isolated from coal mine soils of Godavari belt region, A. P, India. Asian J Exp Biol Sci 2013;4:518-23.  Back to cited text no. 2
    
3.
Bérdy J. Bioactive microbial metabolites. J Antibiot (Tokyo) 2005;58:1-26.  Back to cited text no. 3
    
4.
Manteca A, Alvarez R, Salazar N, Yagüe P, Sanchez J. Mycelium differentiation and antibiotic production in submerged cultures of Streptomyces coelicolor. Appl Environ Microbiol 2008;74:3877-86.  Back to cited text no. 4
    
5.
Clardy J, Walsh C. Lessons from natural molecules. Nature 2004;432:829-37.  Back to cited text no. 5
    
6.
Poosarla A, Ramana V, Krishna RM. Isolation of potent antibiotic producing actinomycetes from marine sediments of Andaman and Nicobar Marine Islands. J Microbiol Antimicrob 2013;5:6-12.  Back to cited text no. 6
    
7.
Shirling ET, Gottlieb D. Methods for characterization of Streptomyces species. Int J Syst Evol Microbiol 1966;16:313-40.  Back to cited text no. 7
    
8.
Eccleston GP, Brooks PR, Kurtböke DI. The occurrence of bioactive micromonosporae in aquatic habitats of the Sunshine Coast in Australia. Mar Drugs 2008;6:243-61.  Back to cited text no. 8
    
9.
Wiegand I, Hilpert K, Hancock RE. Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nat Protoc 2008;3:163-75.  Back to cited text no. 9
    
10.
Green MR, Sambrook J. Molecular Cloning: A Laboratory Manual. 4th ed. New York: Cold Spring Harbor; 2012.  Back to cited text no. 10
    
11.
Cook AE, Meyers PR. Rapid identification of filamentous actinomycetes to the genus level using genus-specific 16S rRNA gene restriction fragment patterns. Int J Syst Evol Microbiol 2003;53:1907-15.  Back to cited text no. 11
    
12.
Cwala Z, Igbinosa EO, Okoh AI. Assessment of antibiotics production potentials in four actinomycetes isolated from aquatic environments of the Eastern Cape Province of South Africa. Afr J Pharm Pharmacol 2010;5:118-24.  Back to cited text no. 12
    
13.
Nurkanto A, Julisiono H, Agusta A, Sjamsuridzal W. Screening antimicrobial activity of actinomycetes isolated from Raja Ampat, West Papua, Indonesia. Makara J Sci 2012;16:21-6.  Back to cited text no. 13
    
14.
Pandey A, Ali I, Butola KS, Chatterji T, Singh V. Isolation and characterization of actinomycetes from soil evaluation of antibacterial activities of actinomycetes against pathogens. Int J Appl Biol Pharm Technol 2011;2:384-92.  Back to cited text no. 14
    
15.
Jorgensen JH, Ferraro MJ. Antimicrobial susceptibility testing: A review of general principles and contemporary practices. Clin Infect Dis 2009;49:1749-55.  Back to cited text no. 15
    
16.
Robinson T, Singh D, Nigam P. Solid-state fermentation: A promising microbial technology for secondary metabolite production. Appl Microbiol Biotechnol 2001;55:284-9.  Back to cited text no. 16
    
17.
Khan ST, Tamura T, Takagi M, Shin-Ya K. Streptomyces tateyamensis sp. nov. Streptomyces marinus sp. nov. and Streptomyces haliclonae sp. nov. isolated from the marine sponge Haliclona sp. Int J Syst Evol Microbiol 2010;60:2775-9.  Back to cited text no. 17
    
18.
Jiang Y, Han L, Chen X, Yin M, Zheng D, Wang Y, et al. Diversity and bioactivity of cultivable animal fecal actinobacteria. Adv Microbiol 2013;3:1-13.  Back to cited text no. 18
    


    Figures

  [Figure 1], [Figure 2]
 
 
    Tables

  [Table 1], [Table 2], [Table 3], [Table 4], [Table 5]



 

Top
 
 
  Search
 
    Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
    Access Statistics
    Email Alert *
    Add to My List *
* Registration required (free)  

 
  In this article
   Abstract
  Introduction
   Materials and Me...
   Results and Disc...
  Conclusions
   References
   Article Figures
   Article Tables

 Article Access Statistics
    Viewed383    
    Printed16    
    Emailed0    
    PDF Downloaded138    
    Comments [Add]    

Recommend this journal