Home  |  About JAPTR |  Editorial board  |  Search |  Ahead of print  |  Current issue  |  Archives |  Submit article  |  Instructions  |  Subscribe  |  Advertise  |  Contacts  |Login 
Users Online: 451   Home Print this page Email this page Small font sizeDefault font sizeIncrease font size
     
ORIGINAL ARTICLE
Year : 2016  |  Volume : 7  |  Issue : 3  |  Page : 91-98

Preparation and physicochemical characterization of topical chitosan-based film containing griseofulvin-loaded liposomes


1 Nanotechnology Research Center; Department of Pharmaceutics, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
2 Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
3 Abadan School of Medical Sciences, Abadan, Iran

Correspondence Address:
Neda Bavarsad
Nanotechnology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz. Department of Pharmaceutics, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz
Iran
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/2231-4040.184591

Rights and Permissions

Griseofulvin is an antifungal drug and is available as oral dosage forms. Development of topical treatment could be advantageous for superficial fungal infections of the skin. In this study, films prepared from the incorporation of griseofulvin-loaded liposomes in chitosan film for topical drug delivery in superficial fungal infections. The properties of the films were characterized regarding mechanical properties, swelling, ability to transmit vapor, drug release, thermal behavior, and antifungal efficacy against Microsporum gypseum and Epidermophyton floccosum. The presence of liposomes led to decreased mechanical properties but lower swelling ratio. Higher amount of drug permeation and rate of flux were obtained by liposomes incorporated in films compared to liposomal formulations. Antifungal efficacy of formulations was confirmed against two species of dermatophytes in vitro. Therefore, two concepts of using vesicular carrier systems and biopolymeric films have been combined and this topical novel composite film has the potential for griseofulvin delivery to superficial fungal infections.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed2805    
    Printed29    
    Emailed0    
    PDF Downloaded469    
    Comments [Add]    
    Cited by others 7    

Recommend this journal