Home  |  About JAPTR |  Editorial board  |  Search |  Ahead of print  |  Current issue  |  Archives |  Submit article  |  Instructions  |  Subscribe  |  Advertise  |  Contacts  |Login 
Users Online: 73   Home Print this page Email this page Small font sizeDefault font sizeIncrease font size
     

 Table of Contents  
ORIGINAL ARTICLE
Year : 2015  |  Volume : 6  |  Issue : 4  |  Page : 165-169  

Effect of sorafenib on sperm count and sperm motility in male Swiss albino mice


1 Department of Anatomy, Melaka Manipal Medical College (Manipal Campus), Manipal University, Manipal, Karnataka, India
2 Department of Pharmacology, Kasturba Medical College, Manipal University, Manipal, Karnataka, India

Date of Web Publication5-Oct-2015

Correspondence Address:
Laxminarayana Kurady Bairy
Department of Pharmacology, Kasturba Medical College, Manipal University, Madhav Nagar, Manipal, Udupi,
India
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/2231-4040.165012

Rights and Permissions
  Abstract 

The issue of male germ line mutagenesis and the effects on developmental defects in the next generation has become increasingly high profile over recent years. Mutagenic substance affects germinal cells in the testis. Since the cells are undergoing different phases of cell division and maturation, it is an ideal system to study the effect of chemotherapeutic agents. There are lacunae in the literature on the effect of sorafenib on gonadal function. With background, a study was planned to evaluate the effects of sorafenib on sperm count and sperm motility in male Swiss albino mice. Male Swiss albino mice were used for the study. The animals were segregated into control, positive control (PC) and three treatment groups. PC received oral imatinib (100 mg/kg body weight) and treatment groups received 25, 50, and 100 mg/kg body weight of sorafenib orally for 7 consecutive days at intervals of 24 h between two administrations. The control group remained in the home cage for an equal duration of time to match their corresponding treatment groups. The animals were sacrificed at the end of 1 st , 2 nd , 4 th , 5 th , 7 th , and 10 th weeks after the last exposure to drug, respectively. Sperm suspensions were prepared and introduced into a counting chamber. Total sperm count and motility were recorded. There was a significant decrease in sperm count and sperm motility by sorafenib which was comparable with the effect of PC imatinib. Sorafenib adversely affects sperm count and sperm motility which are reversible after discontinuation of treatment.

Keywords: Anticancer drug, cauda epididymis, fertility, spermatogenesis


How to cite this article:
Shetty SD, Bairy LK. Effect of sorafenib on sperm count and sperm motility in male Swiss albino mice. J Adv Pharm Technol Res 2015;6:165-9

How to cite this URL:
Shetty SD, Bairy LK. Effect of sorafenib on sperm count and sperm motility in male Swiss albino mice. J Adv Pharm Technol Res [serial online] 2015 [cited 2020 Sep 29];6:165-9. Available from: http://www.japtr.org/text.asp?2015/6/4/165/165012


  Introduction Top


Chemotherapy is one of the most effective methods for the treatment of cancer; in most of the cases it is associated with several short- and long-term toxicities. [1] Today, a high percentage of cancer patients are drastically cured by using chemotherapy, radiation, or their combination, but side effects of antineoplastic agents and radiation have the temporary or permanent influence on fertility. The long-term treatments can cause infertility; semen analysis is the initial and most essential step of the infertility evaluation. The radiotherapy and chemotherapy have deleterious effect germ cells in both prepubertal and adult testis. [2],[3] Sorafenib is a multi-targeted kinase inhibitor. It inhibits the action of vascular endothelial growth factor and is an angiogenesis inhibitor. It is indicated for the treatment of patients with advanced renal cell carcinoma and hepatocellular carcinoma (HCC). Huang and Yang reported that sorafenib induced tumor lysis syndrome in advanced hepatocellular carcinoma patients. [4] It is reported that synergistic interactions between sorafenib and bortezomib in HCC involves protein phosphatase 2A-dependent Akt inactivation. [5] There are hardly any reports on the effect of sorafenib on male reproductive system. Hence, a study was undertaken to evaluate the effects of sorafenib on sperm count and sperm motility in male Swiss albino mice. Imatinib mesylate is a first synthetic tyrosine kinase inhibitor. Prasad et al., proved that imatinib affects the spermatogenesis by causing depression in sperm count and motility. [6] Hence, imatinib was used as positive control (PC) in this study.


  Materials and methods Top


Experimental animals

Inbred male Swiss albino mice weighing 20-30 g were used in this study. Breeding and CPCSEA guidelines were used to breed and maintain the animals. The study was carried out after getting permission from Institutional Animal Ethical Committee (IAEC/KMC/56/2010-2011). A total of three mice only were kept in each polypropylene cage to prevent overcrowding. Animals were kept at 28°C ± 1°C temperature and 50% ± 5% humidity and were fed on laboratory feed (VRK Nutritional Solutions, Pune, India Ltd.) and water ad libitum.

Experimental design

Animals were divided into five groups comprising six animals each (three animals in each cage): Group 1 -normal control (NC), Group 2 - PC (PC-treated with imatinib at the dose level of 100 mg/kg body weight), Group 3 - S1 (treated with sorafenib at the dose level of 25 mg/kg body weight, Group 4 - S2 (treated with sorafenib at the dose level of 50 mg/kg body weight), Group 5 - S3 (treated with sorafenib at the dose level of 100 mg/kg body weight).

Dose and treatment

A total of 180 mice were used in this study, they were divided into 30 groups (six animals per group). Six groups served as NCs, which received gum acacia and six groups served as PCs, which received imatinib 100 mg/kg body weight. Remaining 18 groups were given with sorafenib at the different dose levels of mg/kg body weight orally for a continuous period of 7 days with an interval of 24 h between two administrations. The mice were sacrificed on 1 st , 2 nd , 4 th , 5 th , 7 th and 10 th weeks sample times by overdose of anesthesia (pentobarbital sodium, 40 mg/kg, Sigma Chemicals Co.). [7]

Epididymal sperm count and sperm motility

Mice were sacrificed by an overdose of anesthesia. The method described by Vega et al. was used for sperm count and sperm motility. In brief, sperm suspensions were prepared by mincing cauda in 2 ml of phosphate-buffered physiological saline (PBS, pH = 7.2). The suspension was pipetted and filtered through 80 ΅m nylon mesh to remove tissue fragments. An aliquot (0.05 ml) from the sperm suspension (1 ml) was diluted with 1:40 PBS (PBS, pH 7.2) and mixed thoroughly. A sample of the diluted sperm suspension was put into a counting chamber after discharging few initial drops of the suspension. The total sperm count in 8 squares of 1 mm 2 each was determined and multiplied by 5 × 10 6 to calculate the number of sperms per epididymis. Sperm motility was also counted in same eight squares and percentage of motile sperm were recorded. [8]

Statistical analysis

The data generated are analyzed by one-way analysis of variance followed by Bonferroni's post-hoc test. P < 0.05 were considered statistically significant.


  Results Top


0Effect of sorafenib on sperm count

Sorafenib had a significant effect on the sperm count at each of the treated doses. On the 1 st week sampling time, each dose of the sorafenib (25 mg/kg, 50 mg/kg and 100 mg/kg) considerably decreased sperm count in mice when compared to the control groups. Significantly decreased sperm count was also seen through the 2 nd , 4 th , 5 th , and 7 th week sampling time. For the mice treated with 25 mg/kg, 50 mg/kg, and 100 mg/kg sperm count was least during the 4 th and 5 th week sampling time. However, the sperm count returned closer to control levels in two dose groups (25 mg/kg and 50 mg/kg) by the 10 th week [Figure 1]. The recovery was almost the same in both lower doses (25 mg/kg, 50 mg/kg), which was initiated in the 7 th week and reached close to the control group by the 10 th week. However, the higher dose group did not show complete recovery. PC imatinib had a significant effect on the sperm count in 1 st , 2 nd , 4 th , 5 th , and 7 th week sampling time; sperm count returned closer to control group in 10 th week sampling time.
Figure 1: Effect of sorafenib on spermcount (106). Each dose group from particular time represents mean ± standard deviation from six animals. P values are normal control versus treated, ***P < 0.05, **P < 0.01, *P < 0.001; normal control versus positive control, øP < 0.001; positive control versus treated, +++P < 0.05, ++P < 0.01, +P < 0.001; S1 versus S3, bbP < 0.01; bP < 0.001; S2 versus S3 cccP < 0.05, ccP < 0.01. w = weeks

Click here to view


Effect of sorafenib on sperm motility

Sperm motility was significantly decreased during the1 st , 2 nd , 4 th , 5 th , and 7 th week sampling time with all treated doses of the sorafenib (25 mg/kg, 50 mg/kg and 100 mg/kg). For the mice treated with sorafenib sperm motility was least during the 4 th and 5 th week sampling time [Figure 2]. By the 10 th week, there was complete recovery and the sperm motility values reached the control values except the higher dose group (100 mg/kg). PC imatinib had a significant effect on the sperm motility in 1 st , 2 nd , 4 th , 5 th , and 7 th week sampling time; sperm count returned closer to control group in 10 th week sampling time.
Figure 2: Effect of sorafenib on sperm motility. Each dose group from particular time represents mean ± standard deviation from six animals. P values are normal control versus treated, **P < 0.01, *P < 0.001; normal control versus positive control, øP < 0.001; positive control versus treated, +++P < 0.05, ++P < 0.01, +P < 0.001; S1 versus S3, bP < 0.05; bbP < 0.01; S2 versus S3, cccP < 0.05, ccP < 0.01. w = weeks

Click here to view



  Discussion Top


Chemotherapeutic drugs can oftenly cause severe alterations in spermatogenesis. [9] Testicular dysfunction is the most common long-term side effects of cytotoxic chemotherapy used in the treatment of many malignancies. Chemotherapeutic drugs cause physiological damage to male germ cells in the testis has been associated with fertility, which is assessed by parameters of semen quality. Cytotoxic drugs suppress the spermatogenesis in mammals by causing the death of developing germ cells in the seminiferous tubules. [10] A strategy to decrease the incidence of serious side effects of anticancer drugs with preservation of their chemotherapeutic efficacy is necessary. The male germ cells are incredibly perfect and simple for the study of the genotoxicity of drugs, since they stay alive in different phases of cell development and differentiation. [11] Male infertility is directly related to quality and quantity of sperm within the semen. [12] A reduction in epididymal sperm count denotes altered spermatogenesis owing to the gonadotoxic substance. [13] Male germ cells are incredibly perfect and simple for the study of the genotoxicity of drugs since they stay alive in different phases of cell development and differentiation.

In our study, sorafenib was given orally for 7 days to estimate the sperm count. Data generated indicates that sorafenib is cytotoxic to the sperms. From our findings, we can point out that the germ cells affected are approximately the spermatids, spermatocytes, and spermatogonia. Recovery was stated in the 7 th week, and complete recovery was observed by the 10 th week in the lower dose groups (25 mg/kg, 50 mg/kg). This study indicates that sorafenib affects spermatogenesis by causing a decrease in sperm count, but this effect is reversible once the drug is withdrawn, which indicates that the stem cells were not affected severely. The difference in sperm count between the treated and the control suggests reduced spermatogenic activity and enhanced apoptotic activity on the highly proliferative germ cells, namely spermatogonia and primary spermatocytes. Any agent that interferes with the mitotic division is also known to reduce the sperm count. [14] Sperm count reduction is an important indicator of male infertility. [15],[16] Altered function of the germ cell can also reduce the sperm count. Functional and fully differentiated  Sertoli cells More Details are critical for the development of quantitatively and qualitatively normal spermatogenesis. They also provide structural and functional support to the developing and differentiating germ cells [17] and each sertoli cell can support restricted germ cell. [15] Degeneration in sertoli cells can directly affect sperm counts. More than 90% of cases of male infertility are because of low sperm counts and poor semen quality. [18] Sperm motility has been considered as one of the most important predictors of fertility. Sperm motility may be affected by altered enzymatic activities of oxidative phosphorolytic process. Oxidative phosphorolytic process is required for ATP production, a source of energy for the forward movement of spermatozoa. [19] In our result, sperm motility was significantly decreased during the 1 st , 2 nd , 4 th , 5 th , and 7 th week sampling time with all treated doses of the sorafenib (25 mg/kg, 50 mg/kg and 100 mg/kg). The adverse effect on sperm motility and sperm count was completely reversible by 10 th week. The least sperm motility was observed during the 5 th sampling time in mice treated with all the doses. The sperm motility largely depends on the microtubular apparatus of the sperm tail. [20]

Several reports have demonstrated the correlation of sperm motility with fertilization rates. [21],[22] The normal mitochondrial function is required for sperm motility. [23] Sorafenib toxicity might have been affected the mitochondrial function which may lead to decreased motility. During sperm, maturation spermatozoa acquire progressive motility and fertilizing capacity for the transport of spermatozoa during ejaculation. Any intervention at this site would result in either azoospermia or inability of spermatozoa to initiate fertilization associated events. [24] Spermatogenesis is regulated by testosterone hormone. Lack of testosterone level would have direct effects on the process of spermatogenesis. Decreased sperm count and motility was due to reduced supply of testosterone to the epididymis. [25],[26] Chemotherapeutic agents are extensively used for the treatment of various types of cancers, to some extent they cure the disease or at least increase the life expectancy of cancer patients. [27] Present results thus indicate that sorafenib inhibited spermatogenesis is probably affecting the cell multiplication and differentiation. The difference in sperm count between the treated and the control suggests reduced spermatogenic activity and enhanced apoptotic activity on the highly proliferative germ cells, namely spermatogonia and primary spermatocytes. The spermatogenic stem cells differentiate through division of spermatogonia (mitotic divisions) to form spermatocytes (meiotic cells) that undergo two meiotic divisions to give rise to spermatids (haploid postmeiotic cells) that mature into functional sperm. The kinetics of spermatogenesis is well-established for men and several mammalian species. [28] According to Prasad et al. [6] higher dose of imatinib decrease the sperm count and motility. In our study, imatinib was used as PC, comparing with the result of control, PC and experimental groups, the result of 100 mg/kg body weight of sorafenib also similar to that of imatinib result. Hence, comparing with the result we can say that sorafenib also effects on sperm count and motility.


  Conclusion Top


Sorafenib adversely affected sperm parameters of mice significantly, but this effect is reversible once the drug is discontinued. Outcome of the study may help the clinicians to plan and address the fertility-related issues in young patients of reproductive age who are treated with sorafenib for advanced renal cell carcinoma and HCC.

Financial support and sponsorship

Nil.

Conflicts of interest

There are no conflicts of interest.

 
  References Top

1.
Arnon J, Meirow D, Lewis-Roness H, Ornoy A. Genetic and teratogenic effects of cancer treatments on gametes and embryos. Hum Reprod Update 2001;7:394-403.  Back to cited text no. 1
    
2.
Narayana K, Verghese S, Jacob SS. l-Ascorbic acid partially protects two cycles of cisplatin chemotherapy-induced testis damage and oligo-astheno-teratospermia in a mouse model. Exp Toxicol Pathol 2009;61:553-63.  Back to cited text no. 2
    
3.
Türk G, Atessahin A, Sönmez M, Ceribasi AO, Yüce A. Improvement of cisplatin-induced injuries to sperm quality, the oxidant-antioxidant system, and the histologic structure of the rat testis by ellagic acid. Fertil Steril 2008;89 5 Suppl: 1474-81.  Back to cited text no. 3
    
4.
Huang WS, Yang CH. Sorafenib induced tumor lysis syndrome in an advanced hepatocellular carcinoma patient. World J Gastroenterol 2009;15:4464-6.  Back to cited text no. 4
    
5.
Chen KF, Yu HC, Liu TH, Lee SS, Chen PJ, Cheng AL. Synergistic interactions between sorafenib and bortezomib in hepatocellular carcinoma involve PP2A-dependent Akt inactivation. J Hepatol 2010;52:88-95.  Back to cited text no. 5
    
6.
Prasad AM, Ramanarayan K, Bairy KL. Effect of imatinib on the reproductive function in male swiss albino mice. Pharmacol Online 2010;1:469-78.  Back to cited text no. 6
    
7.
Oakberg EF. Duration of spermatogenesis in the mouse and timing of stages of the cycle of the seminiferous epithelium. Am J Anat 1956;99:507-16.  Back to cited text no. 7
    
8.
Vega SG, Guzmán P, García L, Espinosa J, Cortinas de Nava C. Sperm shape abnormality and urine mutagenicity in mice treated with niclosamide. Mutat Res 1988;204:269-76.  Back to cited text no. 8
    
9.
Bahadur G, Ozturk O, Muneer A, Wafa R, Ashraf A, Jaman N, et al. Semen quality before and after gonadotoxic treatment. Hum Reprod 2005;20:774-81.  Back to cited text no. 9
    
10.
Wyrobek AJ, Gordon LA, Burkhart JG, Francis MW, Kapp RW Jr, Letz G, et al. An evaluation of the mouse sperm morphology test and other sperm tests in nonhuman mammals. A report of the U.S. Environmental Protection Agency Gene-Tox Program. Mutat Res 1983;115:1-72.  Back to cited text no. 10
    
11.
Russell LD, Peterson RN. Determination of the elongate spermatid-sertoli cell ratio in various mammals. J Reprod Fertil 1984;70:635-41.  Back to cited text no. 11
    
12.
Saacke RG, Nadir S, Nebel RL. Relationship of semen quality to sperm transport, fertilization, and embry oquality in ruminants. Theriogenology 1994;41:45-50.  Back to cited text no. 12
    
13.
Poon R, Rigden M, Chu I, Valli VE. Short-term oral toxicity of pentyl ether, 1,4-diethoxybutane, and 1,6-dimethoxyhexane in male rats. Toxicol Sci 2004;77:142-50.  Back to cited text no. 13
    
14.
van der Spoel AC, Jeyakumar M, Butters TD, Charlton HM, Moore HD, Dwek RA, et al. Reversible infertility in male mice after oral administration of alkylated imino sugars: A nonhormonal approach to male contraception. Proc Natl Acad Sci U S A 2002;99:17173-8.  Back to cited text no. 14
    
15.
Kumar SG, Narayana K, Bairy KL, D′Souza UJ, Samuel VP, Gopalakrishna K. Dacarbazine induces genotoxic and cytotoxic germ cell damage with concomitant decrease in testosterone and increase in lactate dehydrogenase concentration in the testis. Mutat Res 2006;607:240-52.  Back to cited text no. 15
    
16.
Meistrich ML, Brown CC. Estimation of the increased risk of human infertility from alterations in semen characteristics. Fertil Steril 1983;40:220-30.  Back to cited text no. 16
    
17.
Orth JM, Gunsalus GL, Lamperti AA. Evidence from sertoli cell-depleted rats indicates that spermatid number in adults depends on numbers of sertoli cells produced during perinatal development. Endocrinology 1988;122:787-94.  Back to cited text no. 17
    
18.
Kumar PK, Raju AB. A review on male fertility. Hygeia J Med 2011;3:20-8.  Back to cited text no. 18
    
19.
Bebb RA, Anawalt BD, Christensen RB, Paulsen CA, Bremner WJ, Matsumoto AM. Combined administration of levonorgestrel and testosterone induces more rapid and effective suppression of spermatogenesis than testosterone alone: A promising male contraceptive approach. J Clin Endocrinol Metab 1996;81:757-62.  Back to cited text no. 19
    
20.
Eddy EM, O′Brien DA. The spermatozoon. In: Knobil E, Neill JD, editors. The Physiology of Reproduction. 2 nd ed. New York, USA: Raven Press; 1994. p. 29-77.  Back to cited text no. 20
    
21.
Check JH, Bollendorf A, Lee MA, Nazari A, Nowroozi K. Correlation of computerized semen analysis with successful fertilization of oocytes in an in vitro fertilization program. Arch Androl 1990;24:229-34.  Back to cited text no. 21
    
22.
Liu DY, Clarke GN, Baker HW. Relationship between sperm motility assessed with the Hamilton-Thorn motility analyzer and fertilization rates in vitro. J Androl 1991;12:231-9.  Back to cited text no. 22
    
23.
Isojärvi JI, Löfgren E, Juntunen KS, Pakarinen AJ, Päivänsalo M, Rautakorpi I, et al. Effect of epilepsy and antiepileptic drugs on male reproductive health. Neurology 2004;62:247-53.  Back to cited text no. 23
    
24.
Shivabasavaiah KR, Pavana T, Ramyashree M, Ramya MC, Manjunath R. Antifertility effects of Madhuca indica leaves in male Swiss albino rats. J Pharm Res 2011;4:323-6.  Back to cited text no. 24
    
25.
Robaire B, Seenundun S, Hamzeh M, Lamour SA. Androgenic regulation of novel genes in the epididymis. Asian J Androl 2007;9:545-53.  Back to cited text no. 25
    
26.
Cornwall GA. New insights into epididymal biology and function. Hum Reprod Update 2009;15:213-27.  Back to cited text no. 26
    
27.
Choudhury RC, Ghosh SK, Palo AK. Cytogenetic toxicity of methotrexate in mouse bone marrow. Environ Toxicol Pharmacol 2000;8:191-6.  Back to cited text no. 27
    
28.
Adler ID. Comparison of the duration of spermatogenesis between male rodents and humans. Mutat Res 1996;352:169-72.  Back to cited text no. 28
    


    Figures

  [Figure 1], [Figure 2]


This article has been cited by
1 Andrologische Beratung bei neuen onkologischen Systemtherapien mit „small molecules“
Till Weidner,Uwe Paasch,Sonja Grunewald
Der Hautarzt. 2018;
[Pubmed] | [DOI]
2 The impact of drugs on male fertility: a review
M. Semet,M. Paci,J. Saïas-Magnan,C. Metzler-Guillemain,R. Boissier,H. Lejeune,J. Perrin
Andrology. 2017;
[Pubmed] | [DOI]



 

Top
 
 
  Search
 
    Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
    Access Statistics
    Email Alert *
    Add to My List *
* Registration required (free)  

 
  In this article
   Abstract
  Introduction
   Materials and me...
  Results
  Discussion
  Conclusion
   References
   Article Figures

 Article Access Statistics
    Viewed3785    
    Printed44    
    Emailed0    
    PDF Downloaded463    
    Comments [Add]    
    Cited by others 2    

Recommend this journal